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Summary. In electronic structure calculations requiring the handling of large
amounts of integrals, storage requirements can often be reduced through the use of
localized orbitals which gives rise to sparse integral arrays. However, conventional
Moller—Plesset perturbation theory is constrained to canonical orbitals due to the
explicit use of orbital energies in the energy expressions, and it is therefore not
straightforward to reduce the storage requirements through such orbital localiza-
tion. This work shows how the constraint of canonical orbitals can be lifted using
a Laplace transform technique, and investigates the reduction in storage require-
ment that can result from the localization of orbitals made possible by such an
approach.
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1 Introduction

Recent developments of direct methods [1-3] for electronic structure calculations
have allowed the application of rigorous ab initio theory to molecules of a size
which was unthinkable only a few years ago [4]. Direct methods have now been
implemented both in Hartree—-Fock and in several correlated schemes [1-3, 5].
However, even with direct methods, the steep scaling of correlation methods
remains a bottleneck for routine calculations of large molecules. This problem is
even encountered at the simplest correlated level, second-order Mgller—Plesset
perturbation theory (MP2), which scales as N°. In this method, the transformation
time for medium-sized systems is often overshadowed by the integral evaluation
time, which has a lower power dependence but a much larger prefactor. For large
systems the time is dominated by the transformation, due to its nominal N°
dependence and the absence of any significant benefit from integral prescreening in
that part of the calculation.
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To extend calculations such as these to large systems, methods which result in
sparse arrays of transformed integrals are of great interest, as this would allow
significant compression of the integrals. Localization of the orbitals can accomplish
such sparsity, resulting in savings in the storage requirement as well as in CPU
time. However, the standard formulation of Meller—Plesset theory refers to canon-
ical orbitals, and prevents any simple localization.

Fortunately, there are available methods which circumvent this canonical
formulation, allowing localization of the orbitals to be utilized. One such approach
used to reduce storage bottlenecks is the local correlation scheme developed by
Saebo and Pulay [6]. As applied to MP2, a form of the MP2 expression is used
which is invariant to rotations among the occupied and virtual orbitals. The
occupied space is localized by conventional means, and the virtual space used to
correlate each occupied pair is defined as the subspace of the atomic orbitals that
are spatially close to the localized occupied orbitals. While this method has
undisputed promise for treating large systems, it is difficult to strictly monitor the
accuracy of the approximation made in the truncation of the virtual space to a
subset of the AO basis [7].

Here, we discuss a similar method which reduces the virtual space based on
rigorous integral thresholds, allowing the approximation to be strictly monitored
with regard to its effect on the final total energy. We use the Laplace formulation
[8,9] in order to provide an invariant form of the MP2 expression which is
described in the following section. Additionally, we have investigated several
localization schemes and screening criteria, and examined their effectiveness in the
context of Laplace MP2 [10].

2 Laplace transform techniques

The second-order correction to the electronic energy can be expressed in a spin
orbital formalism as

1 Cab | ij>*
E¥V=__%yY 97 1
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where
{ab|ij> = <ab|ij> — Lablji}, 2
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i,j, ... denote occupied molecular orbitals, and 4, b, ... denote virtual orbitals. In

order to lift the constraint of canonical orbitals, the energy denominatorsin Eq. (1)
can be rewritten using a Laplace transform [8, 9]
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and the correlation energy can thus be expressed as

E® = Jw eP(r)ds, (%)
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where

eBt) = — 1 T Cab|if)F e~ amnm o, ©
4 ijab
So far, little has been gained compared to the original expression (1). However,
with this new formulation of the correlation energy, ¢ can be written in terms of
t-dependent orbitals and integrals. To accomplish this, a t-dependent scaling of the
orbitals is introduced as follows:

() = {0y e N
for the occupied orbitals, and
Ya(t) = a(0)e " ®)
for the virtuals, ¢! can now be written as
1 o
(1) = 2 Y, <a@®b@) | i()j(@®)>>. ®
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Equation (9) is invariant under unitary rotations within both the occupied and the
virtual orbital space of scaled orbitals [11], and this invariance can be exploited
to localize the orbitals, leading to improved sparsity of the transformed integral
arrays and reducing the number of integrals that must be stored.

3 Numerical quadrature

For the final evaluation of the correlation energy (5), a numerical quadrature
scheme must be used. Fortunately, the function ¢'2(¢) in Eq. (9) is well behaved and
monotonically decreasing, as illustrated in Fig. 1 for a calculation on p-chloro-
phospha-benzene. In fact, for most systems e is virtually indistinguishable from
a simple exponential function, and one would therefore not expect the numerical
integration to be a major computational obstacle.

In principle, any quadrature scheme could be used for the evaluation of
Eq. (5), but in the interest of efficiency we seek one with the minimum number of
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Fig. 1. An illustration of the decay of
e(? (1) the function ¢?(z) with the value of ¢,
0.4 demonstrating why an efficient
quadrature scheme can be designed
02 so easily. The figure shows e'?(t) for
: p-chloro-phospha-benzene. The
optimum quadrature points are also
0.0 L. | indicated
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quadrature points (since a complete integral transformation must be carried out for
each point). In a conventional numerical quadrature scheme the integral would be
approximated with a quadrature in » points as

1 h
= ) wye Tl (10)
Xabij =1

where we have used x,;;; = ¢, + ¢ — & — ¢;, and where the quadrature points ¢,
and weights w, can be optimized in order to find the best fit for 1/x. This is done
using a least-squares approximation

1 # 2
Y ( -3 wae""“”*‘f‘“) = min!. (11)
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The procedure can thus also be viewed as an approximation of 1/x with a basis set
expansion in exponential functions. Clearly, it is sufficient for the approximation to
be accurate over an interval ranging from X ;; = min(x,s;) t0 X e = Max(Xap:;).

Xmax 1 7 2
j <—£ -y wm"“«) dx = min!. (12)
X, a=1

The weights w, can be determined for each of the exponential factors ¢, by solving
the equation

Bw=a, (13)
where
Kmax 1 N
a“:J —e "dx, (14)
By = J Mo xt ) gy (15)

The optimum exponents f, can be determined with a similar, non-linear least-
squares procedure. The final expression for the MP2 energy is thus

n 1 n
E(Z) ~ Z Wy 6(2)(Ia) = - Z Z Z Wy <a(tu)b(ta) ” i(ta)j(t«z)>2 5 (16)
a=1 ijab a=1
with e® evaluated as in Eq. (9). A detailed discussion of these methods is given in
Ref. [9].

4 Laplace transforms in MP2 calculations

As test cases of the quadrature scheme, fluorobenzene and fluoronaphthalene were
chosen. For an unbiased comparison, point group symmetry was not used in the
integral evaluation or transformation. The calculations were performed in a DZP
basis set [12] with the core orbitals uncorrelated.

The number of points required to achieve a certain accuracy in the correlation
energy was determined by optimizing the fit in Eq. (11) using a Mathematica
procedure [13]. In the evaluation of Eq. (5), Xuyis and X, correspond to twice the
HOMO-LUMO and LOMO-HUMO intervals, respectively. The resulting points
and weights {t,, w,} for fluorobenzene are given in Table 1, while Table 2 presents
the corresponding data for fluoronaphthalene.
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The MP2 energies obtained using the quadrature (13) with the data from Tables
1 and 2 are reported in Table 3 for fluorobenzene and fluoronaphthalene. Addi-
tionally, the error as compared to the conventional contribution is provided.
Clearly, milli-Hartree accuracy can be obtained with only four quadrature points.
(The lack of perfectly monotonic convergence with increasing n is due to the fact
that the fit (Egs. (11) and (12)) does not take the integral values and the distribu-
tions of x,,;; into account. Thus, while the fit of 1/x to the sum of exponentials
always improves monotonically — in a least-squares integral sense — with increasing
n, the approximation in Eq. (16) is not guaranteed to do so. Ultimately, as n grows
beyond limits convergence is of course always guaranteed.)

In order to simplify the approach, we examined the possibility of using one
unique set of quadrature points for a number of systems. We used the set of eight
quadrature points developed in Ref. [9] for the medium-sized system p-chloro-
phospha-benzene in calculations on the six systems fluorobenzene, fluoronaphtha-
lene, fluoroanthracene, fluoronaphthacene, fluoropentacene, and fluorohexacene.
A STO-3G basis [14] was used for all these systems since it allowed access to
extended systems at a low cost, and since agreement with experimental results was
not an issue here. As shown in Table 4, using one set of quadrature points for
various systems is definitely a viable approach. Even for the largest test system,
fluorohexacene, milli-Hartree accuracy is achieved with eight quadrature points
or less.

Table 3. MP2 energies and relative errors for a varying number of quadrature points » for fluoroben-
zene and fluoronaphthalene. A DZP basis was used

n Fluorobenzene Fluoronaphthalene

Correlation energy Relative error Correlation energy Relative error

1 — 1.060099 1.3x107! — 1.642201 1.3x107?
2 —0.931256 89x%107? — 1453216 21x1073
3 — 0.934505 54x107? — 1.444828 79%x107*
4 —0.939438 2.1x 1074 — 1.455377 6.4x107*
5 —0.939619 1.5%x 1073 — 1456032 1.8x107%
6 — 0.939587 49x%107% — 1456105 14x 1074
7 — 0.935631 19%107° — 1.456239 43x1073
8 — (.939683 53%x107° — 1.456269 23x107°
Exact — 0.93%633 — — 1456302 —

Table 4. Conventional MP2 correlation energy contributions (in mE, ) and the error
(absolute) in a Laplace MP2 calculation using eight quadrature points

Molecular system

Conventional MP2

Error with Laplace MP2

Fluorobenzene
Fluoronaphthalene
Fluoroanthracene
Fluoronaphthacene
Fluoropentacene
Fluorohexacene

— 347.246908
—590.121092
— 834.882267
— 1076.158480
— 1315.876443
— 1556.003770

470%107°
275% 1074
1.22% 1072
480%107%
L12x 10!
2.03x 107!




56 : A. K. Wilson, J. Almlof

Still, the best accuracy with the least number of points is expected if the points
and weights are actually determined for the system under consideration. It must be
determined on a case-by-case basis if an optimum quadrature for each system is
worth the extra effort of determining specific quadrature points and weights for the
orbital energy interval in question. Obviously, the success of the above simplified
approach hinges on the fact that the {X.n, Xmax} interval of the system for which
the quadrature points and weights were determined covers that of all the systems
that were actually studied. If the system under consideration has x,,;; values in
a range for which no particular accuracy of the approximation {11) is guaranteed
by the least-squares procedure, one cannot expect reliable results.

The numerical evaluation of the invariant MP2 expression requires an indi-
vidual evaluation and integral transformation for each quadrature point. For
instance, using an eight-point quadrature requires going through the transforma-
tion eight times. Simply using the Laplace formulation will therefore increase the
number of integrals that must be evaluated and processed by that factor. However,
the invariant property of the expression allows localization of orbitals which will
reduce the number of large integrals that must be handled, hopefully, even beyond
the number in canonical MP2.

5 Localization methods

To exploit the invariance of Eq. (9) for reducing storage and simplifying the
calculations, the orbitals need to be localized. Any reasonable localization of the
orbitals is likely to increase the sparsity of the integral arrays, and can thus be
useful for reducing storage requirement (and perhaps also CPU-requirement).
However, in order to maximize the sparsity of the integral arrays, localization
methods that specifically provide the maximum number of negligible two-electron
integrals {ij|ab) should be sought. For large systems the coulomb-type terms
{ijlab){ij|ab) in the MP2 energy expressions are typically more significant in
terms of size than the exchange-type terms {ij| ab){ij| ba}, and in the present work
we focus on localization schemes which address the former.

For the localization of occupied orbitals, several standard schemes have been
proposed in the literature [15-17] and the choice between these has little impact on
the performance of the present approach. For efficiency reasons the Boys method
[15], which localizes orbitals based on orbital centroids, and the Pipek-Mezcy
method [17] based on gross atomic populations, have been used in the present work.

For the localization of virtual orbitals, different approaches were also used.
A simple Boys localization of the full virtual orbital space is referred to as a global
approach. In addition, two “local” approaches have been investigated, both of
which can be viewed as modifications of the Edmiston-Ruedenberg approach [16].
In the first, a separate localization of the entire virtual orbital space is performed
for every unique pair of occupied orbitals, and in the second, the entire virtual
space is localized for each particular occupied orbital. The coulomb-like part of the
correlation energy

2. <ablij)* a7

is invariant under unitary rotations of the virtual orbitals, and a large number of
small terms in the sum thus necessitates a few large ones. Accordingly, a localiza-
tion technique that provides either large or negligible {ab|ij} is of interest. A sum
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of the squares of these terms is not invariant, and maximizing such a sum would
have the desired effect of creating either large or negligible terms in Eq. (17). In the
present work we have used a method which maximizes the sum of squares of the
coulomb-type term for each unique pair of occupied orbitals

ab

The virtual orbitals which maximize R;; are determined by using a standard
Newton—Raphson procedure to optimize an exponentially parametrized unitary
transformation [18]. This requires an iterative procedure. Since a full localization
must be carried out for each occupied pair, a diagonal approximation to the
Hessian is used in the Newton scheme for reasons of computational economy.
The approximate nature of this approach does not affect the final result as long as
the scheme converges, but it can affect the rate of convergence.

Orbitals are rotated one pair at a time (2 x 2 rotations) as in other localization
schemes [16] rather than using the entire U matrix to accomplish the localization.
R;; is successively maximized for each chosen pair of orbitals. This iterative
procedure converges to a maximum in the same way as a Jacobi diagonalization
procedure.

In a simplified version of this scheme, the virtual space is localized with respect
to a single occupied orbital. This also provides small differential overlaps between
occupied and virtual orbitals, even though the {ab|ij) integrals are not addressed
directly. In analogy with the previous method, the expression

Y {aaliiy (19)

18 invariant under unitary transformations of the virtual orbitals, and a maximiza-
tion of the sum of squares

R, = Y <aalii)? (20)

thus provides many small contributions to Eq. (19). Again, a Newton—Raphson
approach has been used to maximize R;. In this scheme, however, it is not cost
prohibitive to use the full Hessian since fewer localization steps are needed and
since the Hessian only has N? independent terms rather than N* as in the previous
scheme. Further details of these methods are provided in Ref. [18].

6 Localization in a Laplace scheme

The convergence behavior of the virtual localization with respect to each occupied
orbital pair is illustrated in Fig. 2 for the three smallest test systems. Shown is the
number of large contributions ( >10~# E,) at convergence cutoffs of 200, 1000, and
6000 2 x 2 rotations for each occupied orbital pair. The cutofls are used to keep the
calculation from becoming too expensive in terms of CPU time. The number of
2 x 2 rotations for this method, illustrated in Table 5, is comparable to the number
required in the occupied orbital localization. A localization of the occupied orbitals
for fluorobenzene requires over 30 cycles where each cycle includes 18 2x2
rotations. For large 7, values most of the orbitals are scaled down to insignificance
and their localization encounters numerical challenges which has lead to the
increased number of 2x 2 rotations seen in Table 5. According to Fig.2, the
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Fig. 2. Number of large contributions ( > 107 8) for fluorobenzene, fluoronaphthalene, and fluoroan-
thracene after 200, 1000, and 6000 2 x 2 rotations

Table 5. Number of iterations required for the convergence of the localization procedure at each
quadrature point ¢, of Eq. (16). Listed below are the results for fluorobenzene (FB), luoronaphthalene
(FN), and fluoroanthracene (FA), using both Boys localization and population localization schemes.
The results for both oceupied and virtual orbitals are reported for Boys method. Each iteration
represents N 2 x 2 rotations where N is the number of orbitals that are being localized

n  Population Boys

Occupied orbitals Occupied orbitals Virtual orbitals

N=18 N=27 N=36 N=1§8 N=27 N =36 N=15 N=24 N=33

FB FN FA FB FN FA FB FN FA
1 34 46 65 417 263 229 63 &5 137
2 34 46 63 414 260 221 79 92 142
3 32 54 61 339 218 177 61 95 140
4 32 47 70 202 105 147 57 90 154
5 34 51 67 72 105 136 75 70 130
6 40 57 81 67 98 417 47 108 138
7 64 93 135 63 160 372 48 102 155
8 193 253 674 157 201 > 1000 81 149 492

localization for fluorobenzene converges within 200 2 x 2 rotations for each virtual
localization as compared to nearly 600 for the occupied localization. Thus the
convergence behavior of this scheme is comparable to that of occupied orbital
schemes, though the requirement of an individual localization for each unique pair
of occupied orbitals necessitates the use of convergence cutoffs.

In Fig. 3, a comparison of the number of significant contributions in conven-
tional MP2 to those in Laplace MP2 for the six test systems is shown. A contribu-
tion is defined as a single term in the sums (1} and (16), respectively. Clearly, the
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Fig. 3. The number of large contributions to the MP2 energy for Laplace MP2 with canonical orbitals
(LMP2), with localized occupied orbitals (LMP2(Occ)), Laplace MP2 with globally localized occupied
orbitals and virtual orbitals (LMP2(Occ + Virt(global))), and Laplace MP2 with localized occupied
orbitals and virtual orbitals localized with respect to occupied orbital pairs (LMP2(Occ + Virt(i, /)). The
molecules studied (1RING-6RING) are the same as in Table 4

localization of the occupied orbitals reduces the number of significant contribu-
tions, but there are still more significant contributions than for conventional MP2
due to the repeated evaluation for each quadrature point. For the larger systems,
the numbers are approaching the levels for conventional MP2.

Along with the localization of the occupied space, several virtual localization
schemes were used. The first of these was a Boys “global” localization of all the
virtual orbitals. The results are shown in Fig. 3, along with those of the previous
methods. Fluoronaphthacene is the first test system where the number of large
contributions has been reduced beyond those in conventional MP2. The savings
become even more substantial for larger systems as shown.

However, it is desirable to have as few large contributions as possible, so
attempts were made to achieve even more substantial savings by using techniques
designed to localize the virtual orbital space specifically for each occupied pair. As
shown in Fig. 3, fluoronaphthalene is the first test system where this method results
in fewer large integrals than conventional methods. The number of large contribu-
tions is reduced even beyond the reduction in the global virtual method. However,
the results for the global virtual method approach those for the virtual localization
with respect to occupied orbital pairs for fluorchexacene. There are a couple of
possible reasons for this. First, a cutoff of 200 2 x 2 rotations was used for the
virtual localization with respect to occupied orbital pairs. As shown in Table 5,
the localization in the larger systems is less well converged at a fixed number of
rotations. Another possibility is that localized occupied and virtual orbitals are
more likely to be far apart even with a “global” localization scheme as a system size
increases. Thus, the result for fluorchexacene could reflect the decreasing import-
ance of the type of method used to localize the orbitals.

The results from the virtual localization with respect to an individual occupied
orbital are somewhat surprising. Because this technique specifically addresses the
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differential overlaps, this method was expected to result in fewer large contribu-
tions than for the Boys localization of the virtual orbitals. This method was also
expected to result in slightly more large contributions than for the localization with
respect to occupied orbital pairs. As illustrated in Fig. 4, the number of large
contributions for this method is less than the number for a global localization of the
virtual orbitals. However, for fluoronaphthalene, using a virtual localization with
respect to a single occupied orbital resulted in only approximately 3% fewer large
contributions than the global localization of the virtual orbitals. Because of the
additional work and additional space required for this method over that required
for global localization, the latter is the much more viable option. Larger systems
were not tested with this method.

From these results, it appears that the virtual localization with respect to
occupied orbital pairs produces the smallest number of large contributions. Thus,
the greatest reduction in storage requirements would result from this method. In
practice, however, the cost of this technique is prohibitive as it does scale as N°. If
the scaling could be reduced, or if a less expensive approximation to this approach
could be used, then this method would be a viable approach.

7 Imtegral screening

In order to make use of the sparsity provided by the localization, effective pre-
screening of two-electron integrals is needed. For this, an estimate of the magnitude
of the transformed and untransformed integrals is necessary. There are several
ways in which a four-center integral can be approximated with two-index quanti-
ties, the most powerful of which is one based on the Schwartz inequality [19]. For
the present purpose, however, it is preferable to work with a simpler estimate using
radial overlaps. It is straightforward to show that a four-center, two-electron
integral over Gaussian basis functions can be written as [20]

<p7" [ qs> = Spq Srs @pqrs, (21)

300000

200000

B LMP2Oco+Virtiglobal))
£ LMPXOcc+Virt(i)

100000

Number of Large Contributions

fluorobenzene fluoronaphthalene

MOLECULE

Fig. 4. A comparison of global and individual localization of virtual orbitals for fluorobenzene and
fluoronaphthalene. Boys localization was used for the global localization scheme
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where S, is a radial overlap between basis functions p and g, and 8,,,, is slowly
varying angular factor. Approximating an AQO integral in this spirit,

<Pr1gqs> = Spq Srs, 22)

the radial overlap product can be transformed exactly as the AO integral, and the
various combinations of radial overlaps, partially transformed radial overlaps, and
fully transformed radial overlaps can be used as test criteria. For instance, in the
first step of the transformation where the AO integral {pr|gs) is transformed to

<prlqj>,
<pFIQJ> = chj<pr|qs>a (23)

the criterion on whether the {pr|gjy integral needs to be evaluated is given by
a radial overlap multiplied by a partially transformed overlap (using absolute
values of the molecular orbital coefficients)

<prlq]> ~ Spq Srj~ (24)

Such a screening criterion can also of course be used in conventional MP2, but the
delocalized nature of canonical orbitals certainly would greatly limit its usefulness.

To investigate the effect of integral screening, linear chains of water molecules
were used as test systems. Calculations were done on up to six water molecules
separated by a distance of 5 A, using a DZ basis. In the largest calculation, over
94% of the two-electron integrals {pr|qj> were eliminated with a threshold of
1077, With thresholds of 1078, 78% of both the (pr|bj) and the {pi| bj) integrals
were avoided, while approximately 25% of the final {ai| b/ fell below a threshold
of 1071°. The thresholds were chosen to produce approximately the same error
(=1077 Ey) at all levels of screening, and the different thresholds obtained reflect
the fact that the errors made in the first steps contribute randomly to the error in
the final total energy, whereas the {ai|bj)> integrals contribute with a preferential
sign. The average fraction of integrals eliminated in these calculations is shown in
Fig. 5. The trend clearly indicates that even more substantial screening is to be
expected in larger systems. However, due to the systematic nature of the error
caused by the neglect of the final {ai| bj) integrals, it is expected that the thresholds
for the last part of the transformation will have to be tightened as the size of the
system increases.

100
/H
80
60 //
% N / Fig. 5. Average screening in MP2 for
40 chains of water molecules, using a DZ .
/ basis. The separation of molecules is 5 A.
/ The resulting energy errors are less than
20 0.5 LE,. N represents the total number of
partially and fully transformed two-
s electron integrals in the calculation
1 2 3 4 5 6

Number of water molecules
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8 Conclusion

We have shown that the Laplace technique provides a means for integral reduction
by removing the canonical constraint in MP2 and allowing the use of localized
orbitals. This reduces the number of significant contributions to the correlation
energy, thus increasing the sparsity of the integral arrays and allowing storage
requirement reductions. Though extra work is required, this is more than offset by
the savings in storage requirement.
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Note added in proof
A similar paper by Rauhab and Pulay was submitted to Chemical Physics Letters after our work was
submitted.
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